Fully funded 48-month PhD studentships in Engineering EPSRC and SFI CDT in Sustainable Chemistry
The University of Nottingham
Nottingham, England
1d ago
  • The EPSRC and SFI Centre for Doctoral Training (CDT) in Sustainable Chemistry : Atoms-2-Products would like to invite suitably qualified and highly motivated applicants interested in working in one of four thematic areas : Spectroscopy for Process Intensification and Optimisation;
  • Batteries for a Sustainable Future; Chemical and Biological Recycling of Plastics; and Dial-A-Catalyst.

    CDT Training Programme

    Students will undertake a 4-year PhD programme, where the first year allows them to build strong background knowledge in their chosen Research Theme as well as to benefit from multi-disciplinary Core training activities including Introduction to Sustainability, Entrepreneurial Skills and Responsible Research and Innovation.

    The programme is delivered through a combination of lectures, workshops, group activities and lab sessions.

    Over the remaining three years, students will continue to be exposed to cross-disciplinary training and research, and can access a range of professional skills and career development opportunities.

    CDT Research Themes for academic year 2020 / 21

    Applications are invited to one of the following Research Themes :

    Spectroscopy for Process Intensification and Optimisation

    We are seeking to recruit highly motivated students who are eager to work in a multi-disciplinary team involving mathematicians, chemists, physicists, and engineers to develop fully automated multi-step flow photochemical and electrochemical manufacturing processes.

    This goal is important because chemical manufacturing is moving towards smaller scale production of a larger number of compounds, leaving less time for process development while still being under pressure to reduce costs and increase production flexibility and efficiency.

    With the growing interest in sustainability, effective reaction monitoring and rapid process optimisation are crucial for future manufacturing.

    This Theme focusses on combining Process Analytical Technology and self-optimisation AI to accelerate efficient chemical manufacturing on the kilogram scale in continuous photo-, electro-, and thermal chemistry processes.

    It will blend fundamental science with real world applications to deliver things that are genuinely new.

    The students whom we recruit will gain broad experience in many different areas including :

  • Flow chemistry
  • Process modelling
  • Photo- / electro-chemistry
  • A large variety of spectroscopy including UV / visible, Infrared, Raman and ultrafast time-resolved techniques
  • Interaction with both academia and industry
  • For further information please contact Spectroscopy for Process Intensification and Optimisation Theme Lead Prof Mike George on Mike.

    George nottingham.ac.uk or 0115 951 3512.

    Batteries for a Sustainable Future

    Lithium-ion batteries have revolutionized modern life but they are reaching their performance limits. This Research Theme will work towards the development of the next-generation of sustainable battery technologies.

    The new batteries will have higher energy densities than those of lithium-ion and are necessary for the widespread electrification of transportation.

    Outline of Theme-specific training activities :

  • Formal training in state-of the-art battery science
  • Sustainable chemistry
  • Electrochemistry
  • 3D printing
  • Gas separation science
  • Projects are available in the development of sustainable electrolytes and additives, catalysis, gas scrubbers and cell architecture.

    Our multidisciplinary team includes experts in chemistry, chemical engineering, manufacturing and physics, and we will collaborate with a range of industrial and academic collaborators.

    Nottingham is a leading partner in the Faraday Institution, the UK’s national battery research initiative. Projects will align with Faraday Institution goals and students will have the opportunity to collaborate within the network.

    For further information please contact Batteries for a Sustainable Future Research Theme Lead Dr Lee Johnson on lee.johnson nottingham.ac.uk or 0115 748 7069.

    Dial-A-Catalyst

    Dial-A-Catalyst is focussed on the development of the new generation of nanocatalysts that combine the best features of homogenous (high activity and selectivity) and heterogeneous catalyst (high stability and recyclability) and their application in some of the most important reactions for the chemical industry (e.

    g. CO2 utilisation and ammonia synthesis). The unique catalytic properties of the novel nanocatalysis will be evaluated by : (i)- in situ and in operando methods, to understand the interaction between metals and small molecules (e.

    g. CO2, N2, H2), ii- in catalytic reactions using batch and flow reactors at the laboratory level and at the Rutherford Appleton Laboratory and Siemens semi-industrial nanocatalyst test facility.

    In this project, we (PhD students and academic mentors) will make a step change in the design and fabrication of nanocatalysts solving a number of challenges of the chemical industry.

    Outline of Theme-specific training activities :

  • A large range of synthetic and characterisation methods using cutting edge instrumentation at UoN and Diamond Light Source.
  • Undertake quantum chemical and molecular dynamics computations
  • Industrial training at Siemens / Rutherford Appleton Laboratory Green Ammonia Pilot Plant facility
  • Available research areas

  • Nanocatalysts : design and synthesis
  • Spectroscopy : studying interactions of metal clusters with small molecules
  • Modelling / computation of materials and catalytic reactions
  • Catalytic processes : e.g. CO2 utilization, ammonia synthesis
  • For further information please contact Dial a Catalyst Research Theme Lead Dr Jesum Alves Fernandes on Jesum.AlvesFernandes nottingham.

    ac.uk or Prof Tim Wright on tim.wright nottingham.ac.uk or 0115 846 7076.

    Chemical and Biological Recycling of Plastics

    Many plastic waste streams are not suitable for mechanical recycling, and chemical and biological recycling technologies need significant development to become part of the mainstream solution to the plastics crisis.

    This theme will work to provide understanding of how different plastics

    waste streams can be processed, and what sort of new products can be formed (e.g. monomers, platform chemicals, functional porous materials).

    This is a complex and multidisciplinary challenge with the potential to generate cutting-edge fundamental research while working with industrial partners to find solutions to the global challenge of plastic waste.

    Candidates from a wide range of backgrounds including chemistry, chemical engineering, computational modelling and biochemistry are invited to apply.

    Outline of Theme-specific training activities :

  • Polymer chemistry
  • Processing technologies including microwave, enzymatic and supercritical fluids
  • Valorising products via recovery of oligomers, monomers and functionalised materials
  • Enzyme discovery, production and characterisation
  • Advanced spectroscopic techniques
  • Plastics in the circular economy and life cycle analysis
  • Available research areas include :

  • Enzymatic polymer degradation and enzymatic valorisation of the resulting stream
  • Novel recycling routes enabled by the unique properties of supercritical fluids
  • Developing microwave technologies for polymer recycling
  • Characterisation and exploitation of landfill plastics
  • For further information please contact Chemical and Biological Recycling of Plastics Theme Lead Dr Eleanor Binner on eleanor.

    binner nottingham.ac.uk or 0115 74 84960.

    Benefits of studying with us :

  • An extensive training and development programme
  • Collaboration in smaller multidisciplinary Theme-specific groups
  • Being part of a Cohort of students and peer support
  • Opportunity of an external internship as an integral part of the programme
  • A consumables and conference attendance budget
  • A stipend of £15,009pa (2019 / 20 value)
  • Application criteria

    Candidates should hold one of the following :

  • A minimum of an upper second-class honours degree from a 4-year undergraduate course, or equivalent in Chemistry, Biochemistry, Chemical Engineering, Biosciences, Natural Sciences, Biotechnology, Pharmacy or a closely related subject.
  • A 3-year undergraduate course in one of the above disciplines plus a Masters degree and / or at least one year’s experience in industry.
  • How to apply

    Apply
    My Email
    By clicking on "Continue", I give neuvoo consent to process my data and to send me email alerts, as detailed in neuvoo's Privacy Policy . I may withdraw my consent or unsubscribe at any time.
    Continue
    Application form